

RayEmb: Arbitrary Landmark Detection in X-Ray Images Using Ray Embedding Subspace

ACCV HANOI VIETNAM EC 8-12

Visit our project page for interactive visualizations and code

Pragyan Shrestha, Chun Xie, Yuichi Yoshii, and Itaru Kitahara University of Tsukuba, Tokyo Medical University

The problem of estimating the **camera extrinsics / camera pose** of the imaging system, given 3D model and 2D projection Image. It is a crucial technique for precise navigation and alignment during **orthopedic surgeries**.

3 METHOD OVERVIEW

Key Idea

Represent a **3D point** in a volume as a **subspace** spanned by **ray embeddings** associated with rays intersecting at the point.

Train an **image encoder** such that the ray embeddings of intersecting rays are mapped close to subspace spanned by a subset of known intersecting ray embeddings.

Subspace Representation of a 3D Landmark

Let $\mathbf{e}(\mathbf{x}) = E(I_q(\mathbf{x}); \mathbf{w})$ be the ray embedding of the query input image and $\mathbf{e}'_t = E(I'_t(\mathbf{x}'_t); \mathbf{w}), t \in \{1, 2, 3, ..., N\}$ be the ray embeddings of the template images.

Stack the template ray embeddings to form a matrix. $\mathbf{F} = (\mathbf{e}'_1, \mathbf{e}'_2, \dots, \mathbf{e}'_N)$ Calculate projection matrix onto the subspace. $\mathbf{P} = \mathbf{F}\mathbf{F}^+ = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^+\mathbf{U}^T$

Corresponding 2D Landmark Estimation

Arbitrary Landmark Estimation

We propose to estimate the 2D landmarks of **arbitrary 3D landmarks** inside the volume to mitigate the issue of non-visible landmarks.

Calculate closeness of a ray embedding to the subspace using its projection

Ray embedding with the largest similarity is considered as the corresponding 2D landmark

$sim(\mathbf{P}, \mathbf{x}) = rac{\mathbf{e}^{\mathbf{T}}(\mathbf{x})\mathbf{Pe}(\mathbf{x})}{|\mathbf{e}^{\mathbf{T}}(\mathbf{x})||\mathbf{Pe}(\mathbf{x})|}$

 $\mathbf{\hat{x}} = \operatorname{argmax} \operatorname{sim}(\mathbf{P}, \mathbf{x})$

Sampled 3D Landmarks Corresponding 2D Landmarks 2D-3D Registration e_0 , e_0

4 QUANTITATIVE RESULTS

pecimen	Method	25^{th}	50^{th}	95^{th}	GFR@10	GFR@5
1	DiffDRR	2.125	14.259	147.349	54.054	63.964
	Fixed Landmark	1.520	1.960	6.701	2.703	9.009
	RayEmb	1.625	2.010	6.520	4.505	9.910
	RayEmb*	1.502	2.011	6.535	2.703	10.811
2	DiffDRR	2.049	8.879	203.835	48.077	59.615
	Fixed Landmark	1.602	2.027	7.660	1.923	19.231
	RayEmb	1.604	2.049	7.772	0.962	17.308
	RayEmb*	1.578	2.264	8.281	0.962	20.192
3	DiffDRR	1.402	2.007	119.635	12.500	20.833
	Fixed Landmark	1.474	2.100	4.628	0.000	4.167
	RayEmb	1.549	2.053	5.239	0.000	8.333
	RayEmb*	1.583	2.019	4.737	4.167	8.333
4	DiffDRR	3.529	7.402	216.490	41.667	66.667
	Fixed Landmark	1.937	2.965	23.770	14.583	35.417
	RayEmb	2.094	3.157	15.375	10.417	29.167
	RayEmb*	2.186	3.167	14.103	12.500	33.333
5	DiffDRR	9.062	73.597	140.134	74.545	76.364
	Fixed Landmark	1.190	1.414	8.172	1.818	25.455
	RayEmb	1.248	1.447	7.633	0.000	18.182
	RayEmb*	1.211	1.452	8.313	1.818	21.818
6	DiffDRR	11.263	43.853	375.553	75.000	79.167
	Fixed Landmark	1.875	11.250	121.944	50.000	62.500
	RayEmb	1.647	3.580	28.496	33.333	45.833
	RayEmb*	1.754	3.090	23.832	25.000	45.833

5 QUALITATIVE RESULTS

Datasets

DeepFuoro[1] - CT scans of six specimens with 366 real registered X-ray images. All real X-ray images were used for evaluating RayEmb*.

CTPelvic1K CLINIC[2] - 103 CT volumes with varying resolutions and diverse range of subjects were used for simulating X-ray images using DiffDRR.

Visualizing Registration Results

Figure above illustrates the reprojected landmarks in X-ray image (left) and registered camera poses (right) where initial registration result (green), optimized result (blue) and ground truth (red) cameras are drawn for each method.

DiffDRR[3] - Gradient based optimization of normalized cross correlation between the X-ray image and rendered image.

Fixed Landmark[1] - Estimates heatmaps of 2D landmarks and runs PnP with RANSAC for registration.

Results

Both, Fixed landmark Estimation and Rayemb maintained median **mTRE below 10mm across all specimens**. However, rayemb demonstrated **lower mTRE and Failure rates on specimen 6**, which is the difficult test case in terms of patient and pose variability.

Estimated Heatmaps

Similarity Scores and Projection Error

References

- [1] Grupp, R.B., Unberath, M., Gao, C., Hegeman, R.A., Murphy, R.J., Alexander, C.P., Otake, Y., McArthur, B.A., Armand, M., Taylor, R.H.: Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. Int. J. Comput. Assist. Radiol. Surg. 15(5), 759–769 (May 2020)
- [2]Liu, P., Han, H., Du, Y., Zhu, H., Li, Y., Gu, F., Xiao, H., Li, J., Zhao, C., Xiao, L., Wu, X., & Zhou, S. K. (2021). Deep learning to segment pelvic bones: large-scale CT datasets and baseline models. International journal of computer assisted radiology and surgery, 16(5), 749–756. https://doi.org/10.1007/s11548-021-02363-8 (Mar 2018)
- [3] Gopalakrishnan, V., & Golland, P. (2022, September). Fast auto-differentiable digitally reconstructed radiographs for solving inverse problems in intraoperative imaging. In Workshop on Clinical Image-Based Procedures (pp. 1-11). Cham: Springer Nature Switzerland.